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Abstract. The problem of construction of quantum multiplexer is discussed. A possible construction based
on resonance transport properties of quantum waveguides coupled through small windows is considered.
Small apertures play double role of “connecting channels” and “resonant elements”. Transmission coeffi-
cients for the system are determined. The workability of the device as a quantum switch to one of three
(or to two of three) channels is discussed. Control parameters for the switch are electron energy and bias
voltage.
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1 Introduction

The spectral properties of the Dirichlet Laplacian for cou-
pled strips recently attracted a new wave of interest due
to the development of nanoelectronics (see, e.g., [1]). The
behaviour of an electron in these novel devices is described
by the Schrodinger equation. In many mesoscopic quan-
tum systems the problem reduces to the description of
ballistic electron transport, i.e. to the Helmholtz equa-
tion in a system of waveguides (see, e.g., [2–5]). It has
been proved in [6] that the Dirichlet Laplacian for a sys-
tem of two waveguides Ω+, Ω− of widths d+, d− coupled
laterally through a small window of width 2a (Fig. 1) has
an eigenvalue k2

a close to the threshold and there exist
some positive constants c1, c2 such that

c1a
4 ≤ π2

d2
+

− λa ≤ c2a4

for sufficiently small a (the order of this term was found
in [7] on physical level of rigor). Here d+ > d−. The au-
thors used variational technique and obtained only es-
timates and not asymptotics. Analogous estimates was
obtained for the case of n coupling windows [8]. The
asymptotics of the eigenvalue in question was obtained
in [9,10]. Method of matching of the asymptotic expan-
sions (in a) for the corresponding solutions was used. The
scheme of matching was a modification of that suggested
in [11,12]. The difference is that we start from another

a e-mail: popov@mail.ifmo.ru

Fig. 1. Two coupled waveguides. Ω+, Ω−-waveguides of
widths d+, d− correspondingly, 2a-width of the aperture.

form of the asymptotic series. One can see that there
is some correlation between the result and known weak-
coupling asymptotics for Schrodinger operators [13].

Analogous asymptotic series is obtained for a reso-
nance (quasibound state) close toNth threshold. It should
be stressed that earlier only the order of the main terms
of the asymptotics was obtained by Kunze [7].

A possible construction of three-posed quantum switch
based on described resonant property is suggested. Other
constructions were described in [14–16].
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2 General mathematical result

We shall obtain the asymptotic expansion of a resonance
which tends to the lower bound of the second (third, ..., or
other, but not the first) branch of the continuous spectrum
(Nth threshold) when a→ 0. Let us construct the asymp-
totic series for the resonance. We shall follow the scheme
of matching suggested in [10]. It is related with the ap-
proach [12]. But in [12] the author deals with resonances
close to the eigenvalue of the unperturbed problem, and
we deal with resonances close to the threshold. Due to this
fact we have to start from another form of the asymptotic
series, and, consequently, modify the whole scheme. The
small parameter a be the halfwidth of the opening. Con-
sider the case when d+ > d−. Let k2

a be the resonance
close to the point π2

d2
−

. We shall seek the asymptotic series
of the following form:(

π2

d2
−
− k2

a

)1/2

=
∞∑
j=2

[(j−1)/2]∑
i=0

kjia
j

(
log

a

a0

)i
. (1)

For the corresponding eigenfunction ψa(x) the asympotic
series is the following:

ψa(x) =(
π2

d2
−
− k2

a

)1/2 ∞∑
j=0

ajPj+1

(
Dy, log

a

a0

)
G−(x, y, k)|y=0,

x ∈ Ω− \ Sa0(a/a0)1/2 , (2)

ψa(x) =
∞∑
j=1

[(j−1)/2]∑
i=0

vji(x/a)aj
(

log
a

a0

)i
,

x ∈ S2a0(a/a0)1/2 , (3)

ψa(x) =

−
(
π2

d2
−
− k2

a

)1/2 ∞∑
j=0

ajPj+1

(
Dy, log

a

a0

)
G+(x, y, k)|y=0,

x ∈ Ω+ \ Sa0(a/a0)1/2 , (4)

where a0 is the natural unit of length, for example, d−, St
is a sphere of radius t with the centre at the centre of the
opening,

vji ∈W 1
2,loc(Ω+ ∪Ω−),

P1

(
Dy, log

a

a0

)
= a

(1)
10

∂

∂ny
,

Pm are some polynomials in Dy (Dy is a derivative in
respect to y):

Pm

(
Dy, log

a

a0

)
=
m−1∑
q=1

[(q−1)/2]∑
i=0

a
(m)
qi

(
log

a

a0

)i
Dm−q+1
y ,

m ≥ 2, (5)

D2j+1
y =

∂2j+1

∂n2j+1
y

, D2j
y =

∂2j

∂n2j−1
y ∂ly

,

l = (1, 0), n = (0, 1),

G± are the Green functions for the waveguides Ω±. It is
known that its derivatives can be represented in the close
proximity of the point π2/d2

− in the form

Dj
yG
±(x, 0, k) =

2
d±

sin
πx2

d±
Dj
x

(
sin

πx2

d±

)
|x2=0

(
π2

d2
±
− k2

a

)−1/2

+ Φj(x, k) log
r

a0
+ g±j (x, k)

+
[j/2]∑
i=0

j−2i−1∑
t=0

b
(j)
it (k)r−j+2(i+t) sin (j − 2i)θ, (6)

where (r, θ) are polar coordinates. The terms
b
(j)
it (k), Φj(x, k), g−j (x, k) are analytic in respect to k

in some neighbourhood of the point π/d+, Φj ∈ C∞(R2)
and antisymmetric in respect to x2, g±j ∈ C∞(Ω±),

b
(j)
00 = (−1)[(j+1)/2](j − 1)!/π, b(3)

10

= k2/(2π), Φ1n(0, k) = −k2/(2π). (7)

Boundary problems for the terms vji of the series (3) are
obtained by the following way. One substitutes the se-
ries (3) and (1) (more precisely, not only (1), but also the
corresponding series for ka) into the Helmholtz equation
(for k = ka) with the Dirichlet boundary condition. Then
one changes the variables: ξ = x/a. The coefficients in the
terms with the identical powers of a and log a/a0 should
be equal. Hence, one obtains the following correlations:

∆ξvji = −
j−3∑
p=0

[p/2]−1∑
q=0

Λpqvj−p−2,i−q , ξ ∈ R2 \ γ, (8)

vji = 0, ξ ∈ γ,

where

γ = {ξ : ξ2 = 0, ξ1 ∈ (−∞,−1] ∪ [1,∞)},

and Λpq are the coefficients of the series

k2
a =

∑
p

∑
q

Λpqa
p

(
log

a

a0

)q
.

Let ψ±a (x, k) are the series (2), (4), P (N)
m (Dy, log a

a0
)

are the sums of type (5) where the summation limit m−1
is replaced by min(m−1, N), Ψ±a,N are the series ψ±a (x, k)

in which Pj is replaced by P (N)
j , ψ̂±a (x, k), k̂N (a), v̂N (ξ, a)

are the partial sums of the corresponding series. Note that
Nth finite sums of the series ψ±a (x, k) and Ψ±a,N (x, k) co-

incide because of the definition of P (N)
j . Let us define the
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operator Mpq for the sums U(x, a) of the type (2, 4) (for
k = ka) by the following manner: decompose the coeffi-
cients of U(x, a) in the asymptotic series for r→ 0, replace
the variables (ξ = x/a) and, simultaneously, replace log r
by log ρ + log a, ρ = |ξ|. Mark as Mpq(U) the sum of all
terms of the type ap(log a

a0
)qΦ(ξ). Let

Mp =
∑
q

Mpq.

The following statement applies place. Let ka has
asymptotics given by (1). Then for N ≥ 1 the following
correlations apply:

LN(Ψ±a,N (x, ka)) = LN+1(Ψ±a,N (x, ka))

+MN+1(Ψ±a,N+1(x, ka))

LN (Ψ±a,N(x, ka)) =
N∑
j=1

[(j−1)/2]∑
i=0

V ±ji (ξ)aj
(

log
a

a0

)i
,

LN(Ψ±a,N (x, ka))− LN (ψ̂±a,N (x, k̂N (a))) =

O

(
aρ−N + aN

(
log

a

a0

)N
ρ−1

)
,

(LN (Ψ±a,N (x, ka))− LN(ψ̂±a,N (x, k̂N (a))))ξi =

O

(
aρ−N−1 + aN

(
log

a

a0

)N
ρ−2

)
,

ψ̂±a,N (x, k̂a))− LN(ψ̂±a,N (x, k̂N (a))) =

O

(
rN+1 + aN+1

(
log

a

a0

)N)
,

(ψ̂±a,N (x, k̂a)))xi − (LN (ψ̂±a,N (x, k̂N (a)))xi =

O

(
rN + aN+1

(
log

a

a0

)N
/r

)
,

for ρ → ∞, r → 0, correspondingly. Series V ±ji (ξ) does
not depend on N , is the asymptotic solution of (8) for
ρ → ∞, and vqm = V ±qm(ξ) in the right part of (8) has a
structure:

V ±ji (ξ) =
∞∑

q=−p
ρ−qf±jiq(θ) + log ρ

p−2∑
q=1

ρqF±jiq(θ), (9)

where p = j − 2i, F±jiq(θ), f
±
jiq(θ) are linear combinations

of sinmθ,and their sums V −ji (ξ) + V +
ji (ξ) are polynomials

of j − 2i order. Series V ±Ni(ξ) has the form

V ±Ni(ξ) = V̂ ±Ni(ξ) + kN+1,ik
−1
20 (V ±10 (ξ)± Ṽ ±10(ξ))

± k20

π

[(N−1)/2]∑
i=0

∞∑
j=2

aN−1+p
Nl (−1)[(j+1)/2](j − 1)!ρ−j sin jθ,

where V̂ ±Ni(ξ) does not depend on kq+1,p, a
(m)
qp for q ≥ N ,

Ṽ ±10(ξ) =

{
0, ξ2 > 0,
ξ2, ξ2 < 0.

Note that this statement is analogous to the corre-
sponding lemma in [12] and the proof consists of direct cal-
culations using asymptotics (6, 7). Thus, to make match-
ing it is necessary to show that there exist values kji,
polynomials Pj and functions vji being solutions of (8)
such that the asymptotics of vji, ρ → ∞, ξ2 > 0(ξ2 < 0),
coincides with the series V +

ji (ξ)(V −ji (ξ)), correspondingly.
Below we shall confine our attention to the first terms
k20, k30, k40, k41 only.

The result of matching procedure is as follows. The
asymptotics of k2

a close to the second threshold is as fol-
lows

k2
a = k2

0 − k2
20a

4 − 2k20(k40 + k41 log
a

a0
)a6

− (k2
40 + 2k40k41 log

a

a0
+ k2

41(log
a

a0
)2)a8 + o(a8),

(10)

where

k2
0 =

π2

d2
−
,

k20 =
π3

4d3
−
, k30 = 0,

k40 =
π4

16d2
−

(
3π

8d3
−
− 1
d−

(g+
x + g−x ) +

π

d2
+

√
d2
− − d2

+

),

g±x =
∂g±1 (x, k)
∂x2

|x=0,k=k0

k41 = − π5

16d5
−

for the case d+ > d−, and

k2
0 =

π2

d2
,

k20 =
π3

2d3
,

k41 =
π4

4d3
(−gx +

3π
16d2

),

k41 = − π5

8d5
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Fig. 2. Position of the real part of the resonance via aper-
ture width. 1- for two different waveguides, 2- for two identical
waveguides.

for the case of two identical waveguides (d− = d+ =
d, g+

x = g−x = gx).

3 Discussion

The asymptotics of the eigenvalue close to the threshold
π2

d2
+

is analogous to (10) with corresponding replacement
of the parameters.

It should be stressed that formulas for the case of two
identical waveguides are not limits of those for two dif-
ferent waveguides when d+ → d−. It is related with a
physical reason. One has a different situation below the
threshold for these two cases: if d− 6= d+ then there is
only one way for an electron to come out to infinity, if
d− = d+ then there are simultaneously two ways for the
electron to come out to infinity. That is why an additional
factor 2 appears. The dependence of the real part λra of
the resonance on the width of the aperture is shown in
Figure 2.

Consider three parallel coupled waveguides (Fig. 3).
Let the central waveguide be narrower than the two oth-
ers, and the incoming electron in the central waveguide
has an energy close to the second thresholds of the two
lateral waveguides. One can construct the asymptotics of
resonances and the solution of the scattering problem by
a way analogous to that for two coupled waveguides. The
dependence of the transmission coefficients to each waveg-
uide has resonant character due to the existence of quasi-
bound states near the thresholds. It is shown in Figure 4.
The width of the resonant peak depends on the diame-
ter 2a of the coupling window. The suggested approach
gives us the asymptotics in a of the transmission coeffi-
cient, i.e. we describe the situation for small a. The curves
in Figure 4 is for a = d−/50. For greater values of a the
peaks are not so sharp. The resonance character of the
electron transmission was observed earlier in waveguide
systems with attached resonators [17,18]. In our situation

Fig. 3. Geometrical configuration of the system. Ω1, Ω2, Ω3-
waveguides.

Fig. 4. Dependence of transmission coefficients α1, α2, α3 to
waveguide Ω1, Ω2, Ω3, correspondingly, on electron wave num-
ber k in dimensionless form.

the attached waveguide plays the role of the attached res-
onator.

The effect can be used for the construction of a quan-
tum switch. One can see that when there is a resonant
peak in channel 1, the transmission coefficients to other
channels are close to zero (and analogously for channel 2).
If the electron energy is far from resonances, then one has a
transmission coefficient equal to one in Ω2 and zero trans-
mission in Ω1, Ω3. The position of the resonant peaks de-
pends on the width of the corresponding coupling window
(see Fig. 2). One can control this parameter by changing
bias voltage.

The work is partly supported by RFBR (grant 01-01-00253)
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